

Lead Free EPDM Compounds for MV Cables

LEAD FREE EPDM Compounds for MV Cables

- EPDM based compounds combine superior mechanical and electrical properties
- For these reasons, they are used in a wide variety of voltages and applications, such as

Low, medium and high voltage cables

Control and instrumentation cables

Mining cables

Power cords

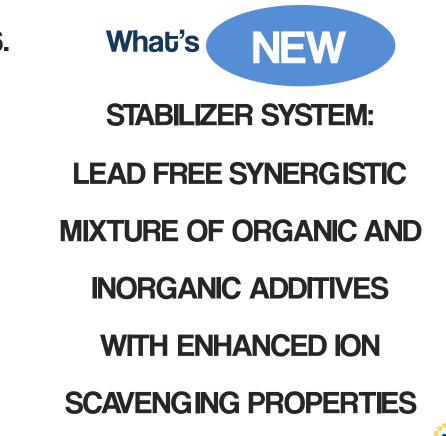
Cables accessories

LEAD FREE EPDM Compounds for MV Cables

- In EPDM compound the rubber resin is mixed with other additives to improve the mechanical and electrical properties
- Lead oxides are used as additives in today's commercially available EPDM compounds for Medium Voltage (MV) insulations as stabilizers for long lasting performances.

Currently in the European Union the Red Lead Oxide is listed in Reach SVHC (Substances of Very High cable Concern) list, forcing MV producers to substitute the material with a

LEAD FREE ALTERNATIVE



Mixer is producing MV cable compounds since 1996.


Main features:

- Base polymers: EPR/EPDM.
- Coated and uncoated mineral fillers.
- > Peroxide soaking process at low temperature.
- Clean compounding process without contamination.

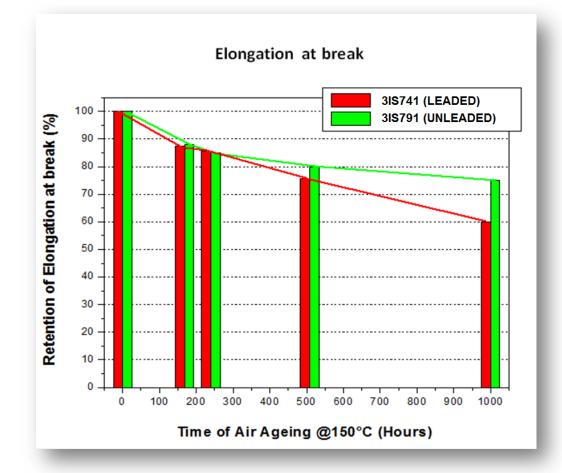
The following parameters have been taken into consideration:

- Easy dispersion and compatibility of new stabilizers into polyolefin matrix.
- Good electrical properties of new stabilizers, especially in wet conditions.
- No interference between crosslinking system and lead free stabilizing pack.
 - Final cost of the compound.

MECHANICAL PROPERTIES

Lab Simulation

PROPERTIES	UNIT	3IS741 (LEADED)	3IS791 (LEAD FREE)
SPECIFIC GRAVITY	g/cc	1.20	1.18
MECHANICAL PROPERTIES			
MODULUS AT 200%	PSI	1000	1000
TENSILE STRENGTH, MINIMUM	PSI	2000	2000
ELONGATION, MINIMUM	%	430	430
HARDNESS	Shore A	84	84
VISCOSITY MOONEY ML (1+4) 100 °C		46	56
CROSSLINKING TIME T90 @ 180°C	minutes	7′ 26″	7' 46"



AGEING RESISTANCE

Lab Simulation

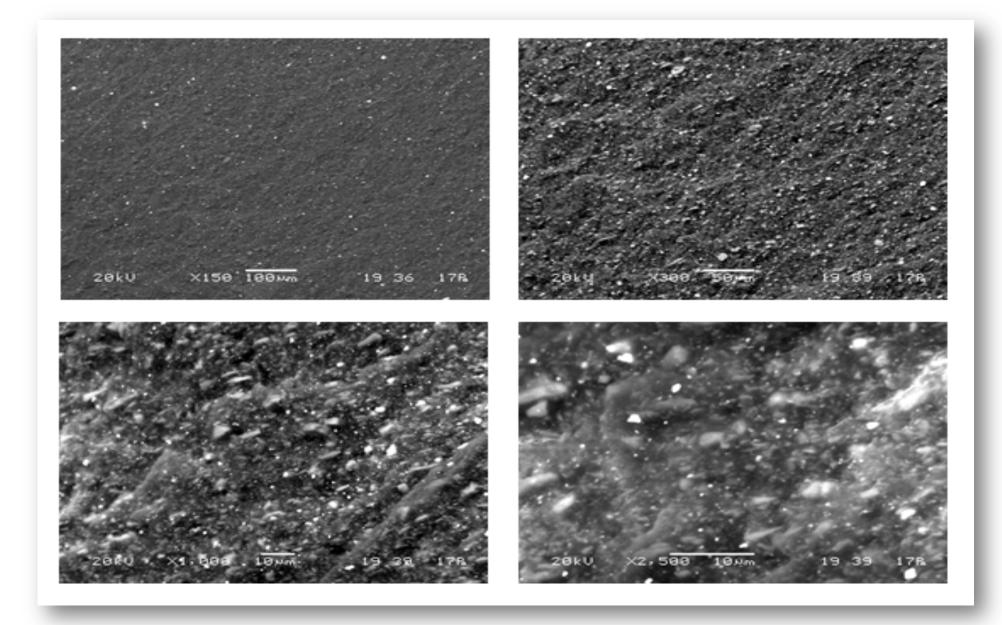
MECHANICAL PROPERTIES

MV POWER 65 KV CABLES

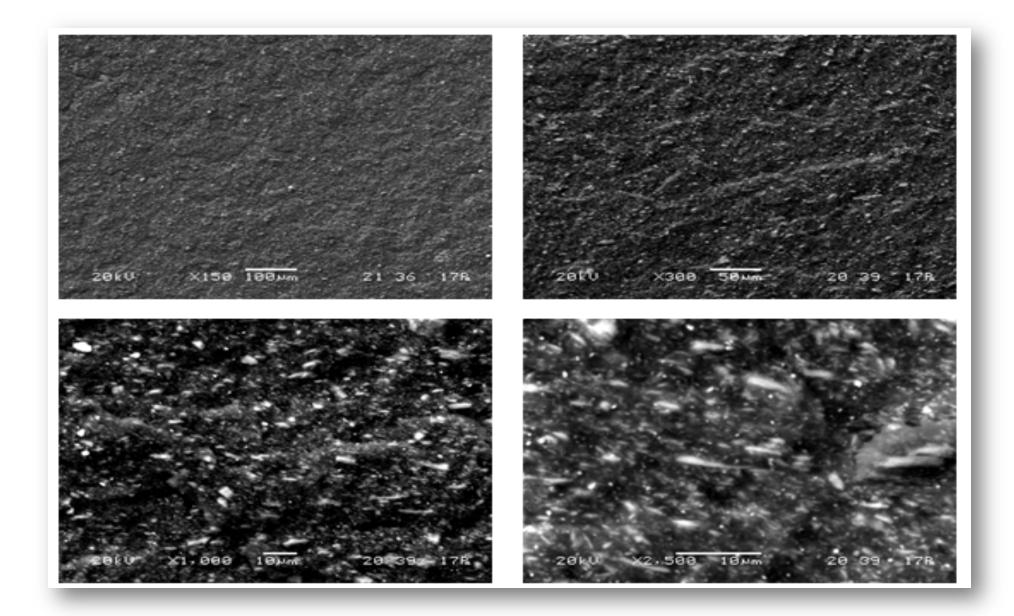
Tests

PROPERTIES	UNIT	REQUIRED BY EU CUSTOMERS	3IS741 (LEADED)	3IS791 (LEAD FREE)
MECHANICAL PROPERTIES				
MODULUS AT 150%	PSI	> 650	1480	1770
TENSILE STRENGTH, MINIMUM	PSI	> 1450	2640	2450
ELONGATION, MINIMUM	%	> 200	410	320
AIR OVEN AGEING (168 H @ 150 °C)				
TENSILE STRENGTH, VARIATION	\bigtriangleup	± 30%	-11	+14
ELONGATION, MAXIMUM VARIATION	\bigtriangleup	± 30%	-9	-7
AIR OVEN AGEING (504 H @ 150 °C)				
TENSILE STRENGTH, VARIATION	\bigtriangleup	± 30%	-21	+18
ELONGATION, MAXIMUM VARIATION	\bigtriangleup	± 30%	-22	-15
AIR BOMB AGEING (40 H @ 127 °C)				
TENSILE STRENGTH, VARIATION	\bigtriangleup	± 30%	-2	+14
ELONGATION, MAXIMUM VARIATION	\bigtriangleup	± 30%	-2	+2

ELECTRICAL PROPERTIES



MV POWER 65 KV CABLES Tests


PROPERTIES	UNIT	3IS741 (LEADED)	3IS791 (LEAD FREE)
DIELECTRICAL PROPERTIES			
DIELECTRICAL CONSTANT @ 25 °C (UNAGED)	-	2.57	2.61
DIELECTRICAL CONSTANT @ 25 °C (AFTER AGEING)	-	2.65	2.76
DIELECTRIC LOSS FACTOR TAN $\delta \ @$ 25 °C/50HZ (UNAGED)	-	2.4*10 ⁻³	2.2*10 ⁻³
DIELECTRIC LOSS FACTOR TAN δ @ 25 °C/50HZ (AFTER AGEING)	-	1.8*10 ⁻³	2.7*10 ⁻³
INSULATING PROPERTIES			
INSULATION CONSTANT @ 20 °C	MΩKm	6000	8000
INSULATION CONSTANT @ 90 °C	MΩKm	6	7
WATER ABSORBTION TEST (24H @ 100 °C)			
VARIATION OF MASS, MAXIMUM	mg/cm ²	0.09	0.04
DIELECTRIC STRENGTH CABLE 95 MM ² 20/12 KV	kV/mm	30	40

Ageing conditions: Aged 136°C Oven for 7 days and immersed for 2h in 100°C water

Morphology of MV LEADED compound

Morphology of MV LEAD FREE compound

THANK YOU FOR YOUR ATTENTION

Technical Director Sales Director Lab & Quality Manager R&D Administrative Office Sales Office Andrea Galanti Claudio Galli Valentina Saporetti Stefano Dossi Natascia Toschi Catia Vallicelli agalanti@mixercompounds.com cgalli@mixercompounds.com lab@mixercompounds.com rdlab@mixercompounds.com amm@mixercompounds.com sales@mixercompounds.com